Automated Object Retrieval from Large Video Surveillance Datasets

Cătălin Alexandru Mitrea^{1,2}

¹ LAPI & Natural Computing Labs, University "Politehnica" of Bucharest, 061071, Romania

² UTI GRUP, Bucharest, 020492, Romania

MMV Seminar - 04/03/2015

Outline

- Introduction (University & Company)
- Previous work
 - > Problem statement
 - ➤ Proposed system
 - Surveillance datasets (Scouter & PEViD)
- Current work (MMV QMUL)
 - ➤ DROP task
 - Main directions/ideas (initial results)
- Conclusions and future work
 - ➤ Acknowledge

Introduction (LAPI Lab)

- Politehnica University of Bucharest, Faculty of Electronics, Telecommunications and Information Technology
 - Image Processing and Analysis Lab (LAPI)
- √ Mathematical models (probabilistic / statistical, fuzzy, etc.);
- √ Color and multispectral image & video processing;
- ✓ Indexing and content-based retrieval algorithms for image and video databases.
- ✓ Parallel systems and fast algorithms for signal processing;

Introduction (Softrust Company)

>UTI Grup, Softrust Vision Analytics Division

Young and specialized team in video analytics applications:

- Safety Zone
- Trip Wire
- Facial Recognition
- Auto Tracking

- Illegal Stopping / parking
- Detection of wrong direction

- Abandoned objects
- Missing objects

Forensics

Previous work - premise

- High volume of video acquisition (~4mil CCTV cameras only in UK);
- Limited human resources.

- Intelligent video surveillance techniques:
 - Real-time identification and tracking of object of interest;
 - Behavior and incident detection;
 - Crowd analysis;
 - Content-based offline searching and indexing of objects (humans).

Previous work - Problem & Objectives

Problem statement

Starting from a small sample (few frames) of the object to-befound (human) => find (search) all relevant instances into a vast multisource video database.

Objectives:

- Develop a system for providing content-based search capabilities within multi-source video surveillance footage.
- Introduce an indexed dataset containing surveillance videos recorded in a real public institution (Scouter DB).

Previous work - Trends in literature

Main methods and directions

- Large video databases processing techniques [Snoek,IEEE 20101;
- Content descriptors extraction (color, texture, shape, temporal and motion, audio [Ionescu, LNCS 2011]);
- Feature points (SIFT, SURF [Stottinger, IEEE 2010]);
- Fusion (BoW, Boosting, fisher kernel representations [Mironica, ACM 2013]).
- Intuitive interfaces for video query and data mining [Shah, IEEE MultiMedia 2007];

Drawbacks

- Computation complexity
- Difficult to implement for "real field" systems
- Not all methods are suitable for video surveillance datasets

perspectives - e.g., multiple source cameras, different weather conditions, different setups - e.g., indoor vs. outdoor, appearances, etc.

Previous work - Proposed system

➤ Block diagram

Previous work - Proposed system (2)

➤ Query (system training)

Previous work - Proposed system (3)

Object (people) detection and retrieval system

Previous work - Proposed system (4)

> Results

 Different instances of the object-to-be-found returned to user from the entire database

Previous work - Content descriptors (know-how)

CN features (Color Naming histogram – color descriptor) [Van De Weijer, CVPR 1994];

```
11 colors distribution: "black", "blue", "brown", "gray", "green", "orange", "pink", "purple", "red", "white" and "yellow".
```

> CM (Color Moments -color descriptor) [Stricker, SPIE 1995];

Color similarity. Three central moments of an image's color distribution: mean, standard deviation and skewness.

CSD (Color Structured Descriptor -color descriptor) [Ojala, ICPR 2002];

Color accumulation and local spatial distribution of colors.

Previous work - Content descriptors (know-how)

LBP (Local Binary Pattern – texture descriptor) [Ojala, ICPR 1994];

Haralick (texture descriptor) [Haralick, TSMC 1973];

->co-occurrence matrices generated using each of these directions

- ▶ HoG features (Histogram of Oriented Graphs shape-based descriptor) [Dalal, CVPR 2005]
- SIFT | SURF descriptors (Scale-invariant feature transform | Speeded Up Robust Features) [Lowe, ICCV 1999 | Herbert, ECCV 2006];

Previous work – Classifiers (know-how)

- 6 classifiers used (5 standard and 1 proposed)
- 1. Naive Bayes
- 2. Nearest Neighbor
- 3. Decision Trees
- 4. Random Forests
- **5.** Support Vector Machines
- 6. FSVC Fast Support

Vector Classifier

Previous work - Datasets

- Manually indexed SCOUTER Database
 - 30 video files (3 different days x 10 cameras @ 6 to 10 FPS
 - 704 x 576 resolution
 - ~36,000 annotated frames (2 people-scenarios!)
 - humans varies from 50 x 50 pixels to \sim 250 x 350 pixels.

- Manually indexed PEViD-HD Database
 - 21 video files
 - − recorded at ~ 25 FPS
 - FullHD resolution
 - ~10,000 annotated frames (14 people–scenarios!)
 - humans varies from \sim 200 x 300 pixels to \sim 650 x 850 pixels.

Scouter free download link: http://uti.eu.com/pncd-scouter/rezultate.html PEViD free download link: http://mmspg.epfl.ch/pevid-hd

Previous work - Datasets (Comparison)

> With other standard video datasets

	KTH	Weizmann	Scouter	PEVID -HD
Max. Resolution (W x H)	160 x120	180 x 144	704 x 576	1920 x 1080
Human Height in Pixels	80 - 100	60 - 70	50 - 350	200 - 850
Human to video height ratio	65 to 85%	42 to 50%	10 to 60%	15 to 65 %
Scenes Viewpoint Type	Side	Side	Varying	Varying
Natural Background Clutter	No	No	Yes	Yes
Incidental Objects/Activities	No	No	Yes	Yes
Multiple annotations on movers	No	No	Yes	Yes

Video dataset examples

Outdoor

SCOUTER

PEVID

Indoor

Current work (MMV – QMUL)

> DROP - Distinctive regions of patterns task;

- ✓ Briefly the task consist of accurately identifying the same regions or patterns of interest in a large set of images from videos, starting from just a few (one) samples as an example.
- ✓ Patterns of interest include color regions, tattoos, logos and any other distinctive feature that appear in a given anchor image.

Current work (Scotland Yard DB)

Main issues

- ▶PTZ cameras (high image shifting/zoom from frame to frame – unsuitable or difficult for motion based detection);
- Low image quality and high noise (need for adaptable & robust feature extraction algorithms);
- ➤ Different perspectives (need for scale invariant feature extraction algorithms);
- Very few (or one) sample used as reference for searching (or training).

DROP Task

Samples

- Stealing in supermarket scenario;
- Find DROP (e.g. "hat"):

~ 1000 frames containing thief with

"hat" drop.

DROP Task (directions - 1)

Feature Points based (dense SIFT, moSIFT, SURF, ORB, etc.)

DROP Task (directions – 2)

☐ Segmentation -> Classification

Original Image

"Hat" Segment Segmentation Mean Shift based

DROP Task (directions - 2)

DROP Task

□ Example

Two
descriptors
agreement
(chi-square
distance based
matching)

DROP Task (directions - 2)

- ☐ Challenges & Initial Conclusions
- For real-world datasets (Scotland DB) "academic" state-of-the art algorithms needs to be adapted to new challenges:
 - How to deal with low quality/noisy data sets (image enhancement for some alg. can decrease performance!);
 - How to "learn" starting from few (or one) samples (fusion, boosting or co-training techniques might be suitable for task);
- The classification-based approach seems a suitable perspective to solve multi-instances object retrieval (search) if there are enough samples to train the "decisioners".
 - Artificial sampling algorithms are investigating (Steerable Pyramids, Dual-Tree Complex Wavelet Transform, etc.);
- For performance assessment, proper and relevant ground truth needs to be developed.

Acknowledge

This work is supported by the SCOUTER project (PN-II-IN-DPST-28DPST/30.08.2013)

Thank you!